
# **Basic Repair Chart**

PAE059 (PC058) Version 1.0+ 110Vac and 240Vac, 0.5 to 5 Joule output energisers

Rev 1v05



Rev 1v05 Last saved 7/04/2016 Page 1 of 7

#### Notes:

- 1. Electrical Appliance Repairs can be dangerous and should only be carried out by suitably qualified persons. If in doubt consult your local electrical safety authority.
- 2. This is a BASIC level repair chart; it covers repairs which can be done without Schematics or an Oscilloscope. It is designed to allow the repair of 80% of expected or known faults.
- 3. There is a minimum set of tools and equipment required, see the list at the end of the document.
- 4. Schematics are available from sales@pakton.com.au
- 5. For other support documents please see <a href="http://www.pakton.com.au/support.php">http://www.pakton.com.au/support.php</a>
- 6. For explanations of the test methods used herein, see the Pakton document "Technical resources for repairs".

#### Preliminary checks before power on

- 1. Check the power lead for breaks or shorts
- 2. Check the case is not wet inside or full of ants
- 3. Check for lightning damage, burn marks etc. If found start by doing a Diode test of every semiconductor
- 4. Inspect the PCB both sides for any signs of moisture or physical damage

#### Known Issues with this design

- 1. C2 can lose capacity (especially HQX brand) and hence 5V rail is lost, the results can be erratic operation
- 2. Q4 can fail shorted or partially shorted, leading to an error 3
- 3. TR1 can develop a shorted winding in the output, the result is low output voltage. This is characterized by unequal readings from each of the 2 outer pins on the output with respect to the centre pin.
- 4. Some 4.5J models have a thermal fuse fitted to R4. If this fuse blows it is usually due to a failure of Q4.
- 5. R17 can fail open circuit. Arcing can sometimes be seen and heard. Note R10 and R17 must be wire wound, not a film type.

#### **Fence OK Or Overload**

Energisers made on this PCBA have two LEDs.

The upper LED is either "Fence OK" OR "Overload". The Fence OK LED flashes on with each pulse *unless* there is an overload, An Overload LED only flashes when *there is* an overload. An overload is a load that takes the fence voltage down to approximately 2kV. All models with the Overload LED show error codes, only some with the Fence OK LED show error codes.

### **Illegal Copies**

We suspect that there are illegal copies of Pakton PCB's being made. All Pakton PCB's will show © Pakton or Ex-PT somewhere on the PCB. Pakton has not authorised any copies and holds patents over some features of the PCB's. The PIC firmware code is also copyright protected.

Rev 1v05 Last saved 7/04/2016 Page 2 of 7

## **Symptom Table.**

Start with the **Symptom**. Then work through the **Tests**.

On, means turn the power on. Off, means turn it off.

A test method in *italics* is described in the Technical resource document.

| Symptom                                                                          | Line | Theory                         | Tests                                                                                                                                                                                                                                                                                                     | Possible Results                                          |  |
|----------------------------------------------------------------------------------|------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| No Pulse, no LEDs                                                                | 1    | Open circuit in supply line    | <ul> <li>On. Measure AC voltage at the AC input terminal A on PCB.</li> <li>Expect 110Vac or 240Vac depending on country.</li> <li>Danger! The Capacitors may be charged.</li> </ul>                                                                                                                      | a) No voltage – Go to 2<br>b) Voltage OK – Go to 3        |  |
|                                                                                  | 2    | Blown Fuse in lead plug        | 110Vac leads have a fuse in the plug.                                                                                                                                                                                                                                                                     | Go to 113                                                 |  |
|                                                                                  | 3    | Blown fuse on PCB              | <ul><li>On. Measure AC voltage at the far end of fuse F2. Expect 110Vac or 240Vac depending on country.</li><li>Danger! The Capacitors may be charged.</li></ul>                                                                                                                                          | a) No voltage – Go to 112<br>b) Voltage OK – Go to 4      |  |
|                                                                                  | 4    | +5V power supply missing       | On. Measure DC voltage at Pin 1 of T10 (ICSP). Expect 5V.                                                                                                                                                                                                                                                 | a) Low voltage – Go to 5<br>b) 4.8 to 5.2V OK – Go to 109 |  |
|                                                                                  | 5    | Power Supply Capacitor Failure | Off. Remove or Lift one end of C2. (Note 1) Measure Capacitance of C2 and C16. Expect 220nF.                                                                                                                                                                                                              | a) Low – Go to 101<br>b) OK, resolder – Go to 6           |  |
|                                                                                  | 6    | Other Power Supply Failure     | Off. Diode check D12 and D6                                                                                                                                                                                                                                                                               | a) Low – Go to 107<br>b) OK – Go to 110                   |  |
| No Pulse. Energiser OK LED flashes then stops. Overload LED flashes Error code 3 | 7    | Main Capacitor not charging    | On. Measure Maximum DC voltage on the main capacitor at Cap+. See the table below for expected voltage. It should achieve the minimum in approx 1 second. You have 3 seconds after power on to take this measurement. So connect the voltmeter and then turn on.  Danger! Discharge Capacitor after test. | a) Voltage Low - Go to 9<br>b) OK – Go to 20              |  |
|                                                                                  | 8    | Discharge circuit Failure      | Off. Replace Q4.                                                                                                                                                                                                                                                                                          | a) Was bad – Goto 102<br>b) OK – Go to 9                  |  |
|                                                                                  | 9    | Charging circuit Failure       | Off. Measure Resistance In-circuit of R4. Expect 10 Ohms.                                                                                                                                                                                                                                                 | a) Bad – Go to 114<br>b) OK – Go to 10                    |  |
|                                                                                  | 10   | Charging circuit Failure       | Off. Measure Resistance In-circuit of R17. Expect 10 Ohms.                                                                                                                                                                                                                                                | a) Bad – Go to 105<br>b) OK – Go to 11                    |  |
|                                                                                  | 11   | Charging circuit Failure       | Off. Diode Test D2, D3, D7, D9                                                                                                                                                                                                                                                                            | a) Bad - Go to 107<br>b) OK – Go to 12                    |  |

Rev 1v05 Last saved 7/04/2016 Page 3 of 7

|                                                                                     | 12 Discharge circuit Failure Off. Remove or Lift one end of D5. Diode Test D |                                  | Off. Remove or Lift one end of D5. Diode Test D5 (note 2)                                                                                                                                                                           | a) Bad - Go to 107<br>b) OK – Go to 13          |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                                                                     | 13                                                                           | Charging circuit Failure         | Off. Remove or Lift one end of M2 On. Measure Maximum DC voltage on the main capacitor at Cap+. See the table below for expected voltage. It should achieve the minimum in approx 1 second. Danger! Discharge Capacitor after test. | a) Voltage Low - Go to 118<br>b) OK – Go to 111 |
| Output Voltage is lower than normal (Note 3). Over Load LED flashing with fire LED. | 14                                                                           | Capacitors not charged correctly | On. Measure Maximum DC voltage on the main capacitor at Cap+. See the table below for expected voltage. It should achieve the minimum in approx 1 second.  Danger! Discharge Capacitor after test.                                  | a) Voltage Low – Go to 15<br>b) OK – Go to 17   |
|                                                                                     | 15                                                                           | Charging circuit faulty          | <b>Off.</b> Diode test Check all Diodes D2, D3, D4, D7, D9. Also check for poor solder joints and "head on pillow".                                                                                                                 | a) Bad – Go to 107<br>b) OK – Go to 16          |
|                                                                                     | 16                                                                           | Charge capacitor                 | Off. Danger! Discharge Capacitors.  Remove or Lift one end of C4, C5 and C6. Measure capacitance of C4, C4 and C6  Expected values depend on model (Note 4)                                                                         | a) Low - Go to 117<br>b) OK – Go to 19          |
| Main capacitor voltage does not seem to drop at fire.                               | 17                                                                           | Main Capacitor                   | <b>Off.</b> Danger! Discharge Capacitors. Disconnect main pulse capacitor and <i>Measure capacitance</i> main capacitor. Expect 8,16 or 30uF +/- 10%.                                                                               | a) Low - Go to 104<br>b) OK – Go to 18          |
|                                                                                     | 18                                                                           | Transformer                      | Off. Danger! Discharge Capacitor.                                                                                                                                                                                                   | Go to 103                                       |
|                                                                                     | 19                                                                           | Q1 Failed                        | Off. Replace Q1.                                                                                                                                                                                                                    | a) Was bad – Goto 106<br>b) OK – Go to 118      |
| More than 1 pulse per<br>second.<br>Overload LED flashes<br>Error 4                 | 20                                                                           | Fast firing                      | Assume it is caused by a dying SCR                                                                                                                                                                                                  | Go to 102                                       |
|                                                                                     |                                                                              |                                  |                                                                                                                                                                                                                                     |                                                 |

Rev 1v05 Last saved 7/04/2016 Page 4 of 7

| No Pulse. Energiser OK LED flashes then stops. Overload LED flashes Error code 5 | 21 | Not firing, firing circuit failure      | Off. Danger! Discharge Capacitor before test. Measure Resistance In-circuit of R20. Expect 47 Ohms.                                                                                                      | a) Bad – Go to 115<br>b) OK – Go to 22  |
|----------------------------------------------------------------------------------|----|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                                                  | 22 | Firing circuit failure                  | Off. Danger! Discharge Capacitor before test. Diode Test a NPN type Bipolar transistor Q2.                                                                                                               | a) Bad – Go to 116<br>b) OK – Go to 23  |
|                                                                                  | 23 | Main capacitor disconnected or very low | <b>Off.</b> Danger! Discharge Capacitors. Disconnect main pulse capacitor and <i>Measure capacitance</i> main capacitor. Expect 8,16 or 30uF +/- 10%.                                                    | a) Bad – Go to 104<br>b) OK – Go to 118 |
| Fuse keeps blowing                                                               | 24 | Short on Active                         | Off. Lift one leg of R4. This isolates the first few components. On. Measure AC voltage at the far side of F2 fuse. Expect 110Vac or 240Vac depending on country. Danger! The Capacitors may be charged. | a) Low – Go to 108<br>b) OK – Go to 118 |

### **Notes**

- Note 1 After lifting a leg or removing a component to test it, replace it before proceeding to the next test step.
- Note 2 D5 will fail a diode test if Q4 has failed short circuit shorted
- *Note 3* When checked with an Electric fence voltmeter with a 500 Ohm load across the output.
- Note 4 The charging capacitors will have the value written on them as a 3 digit code. The 3<sup>rd</sup> number is a multiplier. So 474 means 47 with 4 zeros or 470000pF which is 0.47uF. 105 means 1uF.

Rev 1v05 Last saved 7/04/2016 Page 5 of 7

### Faults table

If you find a fault which is not covered in the list below, and it is likely to occur again, please inform Pakton.

| No. | Fault(s)                        | Repair Action / Notes                                                                              |  |  |
|-----|---------------------------------|----------------------------------------------------------------------------------------------------|--|--|
| 101 | C2 failed                       | Replace C2                                                                                         |  |  |
| 102 | SCR failed                      | Replace SCR. You may need to snip two leads off at SCR body to remove it.                          |  |  |
| 103 | Output Transformer TRA failed   | Replace TR1. Use only a COL023 from Pakton.                                                        |  |  |
| 104 | Main capacitor failed           | Replace main discharge capacitor. Use a pulse grade capacitor of the same size and voltage rating. |  |  |
| 105 | R17 Failed                      | Replace R17. The replacement must be a wire wound, not a metal film.                               |  |  |
| 106 | Q1 Failed                       | Replace Q1                                                                                         |  |  |
| 107 | A Diode failed                  | Replace it with the same type, Diode test others before applying power again.                      |  |  |
| 108 | M1 failed                       | Replace M1, replace Fuse, resolder R4 leg.                                                         |  |  |
| 109 | IC2 (PIC) Failed                | Replace IC2 – requires SMD rework tools and IC2 must be purchased pre-programmed from Pakton       |  |  |
| 110 | Shorted 5V rail                 | One of IC2, Q2, D12, D6 is dead. Repair is beyond Basic level.                                     |  |  |
| 111 | M2 failed                       | Replace M2                                                                                         |  |  |
| 112 | PCB Fuse blown                  | Replace fuse                                                                                       |  |  |
| 113 | Fuse or mains lead open circuit | Replace fuse in mains lead plug (110Vac only) or mains lead                                        |  |  |
| 114 | R4 failed                       | Replace R4                                                                                         |  |  |
| 115 | R20 failed                      | Replace R20, check Q2 and Q4                                                                       |  |  |
| 116 | Q2 failed                       | Replace Q2, check Q4                                                                               |  |  |
| 117 | Charging Capacitor Failed       | Replace with same value and voltage rating. See Note 4                                             |  |  |
| 118 | Unknown                         | Repair is beyond Basic level.                                                                      |  |  |

Rev 1v05 Last saved 7/04/2016 Page 6 of 7

### Table of Expected Output Voltage (kV) on Load per Model

| Model                    | Part Number | Joules | Vin         | Main Cap | Charge V | kV on 500R |
|--------------------------|-------------|--------|-------------|----------|----------|------------|
| TE50                     | PAE070      | 0.5J   | 110Vac/60Hz | 8uF      | 390-420  | 4.1        |
| TE100                    | PAE071      | 1.5J   | 110Vac/60Hz | 8uF      | 540-600  | 5.5        |
| TE300                    | PAE072      | 3.0J   | 110Vac/60Hz | 16uF     | 620-620  | 6.6        |
| TE500                    | PAE073      | 4.5J   | 110Vac/60Hz | 30uF     | 530-600  | 5.8        |
| 8ME                      | PAE066      | 0.5J   | 230Vac/50Hz | 8uF      | 490-490  | 3.1        |
| M1.5, LIM20,<br>16ME     | PAE067      | 1.5J   | 230Vac/50Hz | 8uF      | 640-700  | 4.5        |
| M3, LIM30,<br>35ME, FC3J | PAE068      | 3.0J   | 230Vac/50Hz | 16uF     | 580-600  | 4.9        |

### Minimum Tools Required for Basic level repair charts

- Electric fence kilo-voltmeter and 500 Ohm load Or Electric Fence Impulse Energy Meter
- Digital Multi-Meter with Diode check, Capacitance measurement to 30uF, Voltage range to 1000Vdc and maximum hold function.
- Temperature controlled Soldering Iron
- Desoldering suction tool for through hole re-work and or Solder wick (desoldering braid)
- Capacitor discharge resistor (500 Ohm 10W)
- Small hand tools such as screw drivers and side cutters etc
- Mains Isolation transformer (for 110/240Vac designs)
- A clean and tidy work area with an insulated surface

Rev 1v05 Last saved 7/04/2016 Page 7 of 7